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Abstract Dementia disease is globally acknowledged as one of the most severe non-
communicable diseases nowadays. Identifying different stages of dementia disease is
significant in its later treatment for delaying the onset and progression of the disease.
Among diverse types of tools utilized in dementia disease diagnosis, brain scanning is
generally accepted as an effective and affordable way at present. There are several kinds
of medical images incorporated in contemporary dementia studies, and magnetic resonance
images receives vast popularity. In this study, arterial spin labeling, an emerging perfu-
sion functional-magnetic resonance imaging technique, is adopted in a newly proposed
image-based immersive tool for dementia disease diagnosis. Novel pairwise ranking and
learning techniques based on a new continuous and differentiable surrogated Kendall-Tau
rank correlation coefficient is proposed to realize the immersive tool. Extensive exper-
iments based on a database composed of images acquired from 350 demented patients
are carried out with several popular pattern recognition diagnosis tools being compared.
Their results undergo rigorous and comprehensive statistical analysis, and the superior-
ity of the newly proposed image-based immersive tool in dementia disease diagnosis has
been demonstrated.
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1 Introduction

Dementia disease is widely acknowledged as a broad category of brain functions degen-
eration, which may result in gradual decrease of normal capabilities of thinking, memory,
language, motivation, etc, for ordinary people in a long term. There are various forms of
dementia disease, including vascular dementia, lewy body dementia, frontotemporal demen-
tia, etc [29]. Among them, Alzheimer’s Disease (AD) is generally regarded as the most
common form. According to statistics provided by the World Health Organization, AD is
often diagnosed worldwide in patients over 60 years old, and is now considered as one of
the five most severe non-communicable diseases in the whole world (i.e. others include car-
diovascular disease, cancer, diabetes and chronic lung disease) [29]. According to another
population study conducted by the United Nations, there are more than 26.6 million AD
patients diagnosed globally [28], and 1 in 85 worldwide people is predicted to be suffering
from AD by the year 2050 [3]. Thus, dementia disease becomes an actual threat in many
countries of aging societies nowadays. Accurate diagnosis and timely treatment is essential
to delay the onset and progression of dementia disease [3].

Identifying the progression of dementia disease into various stages accurately is often of
great importance to understand mechanisms of the disease, making correct treatments to cor-
responding symptoms of the disease possible at a later stage [3]. Thus, in order to perceive
the progression of dementia disease accurately in clinical diagnosis, a variety of methods
have been proposed and utilized to date. Popular diagnosis methods include pathography
analysis, cognitive examination, brain scanning, etc. Pathography is helpful to predict cur-
able symptoms of demented patients who may usually suffer from other forms of diseases
(e.g., stroke, heart disease, renal failure, etc) at the same time [20]. Cognitive examination
evaluates the progression of demented patients through a series of cognition tests based
on diverse cognitive capabilities of patients, including short-memory, long-memory, logic
analysis, etc [8, 22]. Popular cognitive examinations include Mini-Mental State Examina-
tion (MMSE) [8] and Addenbrooke’s Cognitive Examination (ACE) [22]. Although these
cognitive exams require few trainings for clinicians and are relatively easy to be carried
out by them, outcomes of those exams could be highly biased by patients specialities. For
example, patients of high-level education suffering from dementia disease are more likely
to outperform ordinary patients of low-level education without dementia disease in those
cognitive exams. For brain scanning, it is accepted as an effective and affordable way in
dementia diagnosis nowadays. There are several imaging tools incorporated for dementia
diagnosis, including Computed Tomography (CT), Positron Emission Tomography (PET),
Magnetic Resonance Imaging (MRI), etc. Among them, MRI receives vast popularity,
because of its prominent capability in both generating high-resolution images of brain tis-
sues and free of ionizing radiation exposure, compared with other scanning tools such as
CT and PET. Most contemporary MRI scanning techniques can be categorized into struc-
tural MRI (sMRI) and functional MRI (fMRI), and both of them have already been adopted
in various dementia studies nowadays [21, 23].

In this study, a novel fMRI-based immersive tool based on new raking techniques
is introduced for dementia diagnosis for the first time. Generally speaking, the pur-
pose of ranking is to sort a list of items according to a system of rating or a record
of performance, and most ranking approaches can be categorized into pointwise ranking
approaches and pairwise ranking approaches. For pointwise ranking, provided an image list
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d = {d1, d2, . . . , dn}, pointwise ranking aims to assign each image a discrete category:
{(d1, c1), (d2, c2), . . . , (dn, cn)}, in which {c1, c2, . . . , cn} ∈ C; C = {c1 � c2 � . . . cm} is
a set of m (where m ≥ n) ordered categories, in which � denotes an order between various
categories. Since elements in C are ordered discrete values, pointwise ranking is also known
as ordinal regression, which is between regression (outputs: real values that can be ordered)
and classification (outputs: non-ordered discrete values) [5, 13]. Representative pointwise
ranking approaches include constrained ordinal regression [5], Pranking [6], OAP-BPM
[12], ranking with large margin principals [26], etc. Although pointwise approaches are
convenient to implement due to their close resemblance to both regression and classification,
their drawbacks are obvious: they can only deal with judgements in the form of absolute
values. Non-absolute preference, such as pairwise preference and partial/full list orders,
cannot be handled by those pointwise ranking approaches. For pairwise ranking, however,
it focuses on data “pairs”, instead. Take images for illustration purposes, in the learning
stage of pairwise ranking approaches, image pairs (dα, dβ) (α, β ∈ {1, 2, . . . , n}, α �= β)
are collected from an image list d = {d1, d2, . . . , dn}. For each pair, a label r ∈ {+1, −1}
is assigned indicating the order of two images (dα, dβ): +1 shows dα should be ranked
before dβ , while −1 to the contrary. The main idea of pairwise ranking approaches is similar
towards that of the well-known binary-class classification, and pairwise ranking approaches
often formulate the ranking task as a classification problem accordingly [4, 9, 15]. Con-
ventional classification methods, such as boosting, Support Vector Machine (SVM), and
Artificial Neural Network (ANN), have been incorporated leading to corresponding pair-
wise ranking methods, such as RankBoost [9], RankingSVM [15], and RankNet [4],
respectively. There are several advantages with pairwise ranking approaches compared with
pointwise ranking approaches. First, existing classification methodologies can be conve-
niently adopted in pairwise ranking approaches [4, 9, 15]. Second, pairwise preference,
rather than absolute relevance, is relatively easy to obtain under certain circumstances [15],
making pairwise approaches more adaptive to be utilized in practical applications.

In this paper, a novel pairwise ranking technique and it associated learning method will
be investigated in the newly proposed fMRI-based immersive tool for dementia diagnosis.
Main contributions of this paper can be revealed as follows: 1) Technically, new pairwise
ranking and learning techniques are introduced in this paper for the first time; 2) It is also
the first attempt to perform dementia disease diagnosis from the new perspective of pairwise
ranking, rather than conventional classification or clustering perspectives. The organization
of this paper is described as follows. First, the conventional position-based ranking eval-
uation measure, Kendall-Tau rank correlation coefficient, is introduced in Section 2. The
Kendall-Tau coefficient forms the theoretical basis of the new pairwise ranking technique
introduced in this study. The learning of ranking functions in the pairwise ranking procedure
is to be realized via an optimization process based on the Kendall-Tau coefficient, which
is, however, neither continuous nor differentiable with respect to its discrete pair-counting
terms. Hence, a new continuous and differentiable surrogate Kendall-Tau coefficient is
proposed and its corresponding ranking functions learning method based on the new sur-
rogate coefficient is introduced therein. All the above novel techniques and essential
derivations are explicitly elaborated in Section 2. In Section 3, extensive experiments are
conducted to evaluate the performance of the newly introduced image-based immersive tool
for dementia diagnosis. fMRIs acquired from 350 real patients of different dementia dis-
ease progressions are utilized to construct a database for performance evaluation. The newly
proposed tool has been compared with several other tools based on well-established pattern
recognition techniques, and all experimental results of all compared methods are evaluated
from the statistical point of view. Finally, the conclusion of this study is drawn in Section 4.
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2 Methodology

2.1 Kendall-Tau rank correlation coefficient

The Kendall-Tau rank correlation coefficient is a conventional ranking performance evalua-
tion measure named after the British statistician Sir Maurice Kendall [18]. Take images for
illustration purposes, the definition of Kendall-Tau rank correlation coefficient (i.e., KT) is
described in (1).

KT = N

Nn

= P − Q

Nn

= P − Q

1
2n(n − 1)

(1)

where, P and Q denote pairwise comparisons in a ranked images list. To be specific, P

and Q are counting numbers of concordant image pairs and discordant image pairs in a
ranked images list, respectively. Nn is a normalization term denoted by the number of image
pairs in a ranked list consisting of n images (i.e., Thus Nn is equivalent to the number of
2-combinations from n images: C2

n = n!
(n−2)!·2! = 1

2n(n − 1)).
The idea of concordant/discordant pairs can be described in Fig. 1. Provided an image

pair (x, y) where images x and y both record dementia disease in this study, x contains
more serious disease severity than y (i.e., x > y in Fig. 1). Suppose x and y are included
in the same images list together with other images which also record the dementia disease,
and the listed images are ranked in a descending order of the disease severity. When x is
ranked before y, it matches the fact that x contains more severe disease severity than y, and
(x, y) forms a concordant pair thereafter (i.e., illustrated in Fig. 1). Otherwise, (x, y) forms
a discordant pair.

Generally speaking, the range of KT is within [−1, +1], and higher KT values indicate
better ranking performance within the ranked list. In this study, KT is picked to evaluate
the ranking performance, as the characteristics of data pairs is naturally inherited in this
conventional position-based ranking evaluation measure, making it suitable for pairwise
ranking. Based on KT, function learning can be carried out within an optimization process.
However, the optimization cannot be executed directly on KT for ranking functions learning,
because the original KT is neither continuous nor differentiable in terms of its discrete
pair-counting terms P and Q. Hence, a new continuous and differentiable rank correlation
measure is necessary for functions learning in the pairwise ranking.

2.2 Continuous and differentiable surrogate Kendall-Tau coefficient

In order to obtain a continuous and differentiable surrogated measure based on the original
KT, terms P and Q in (1) are represented mathematically first. Given two images x =
(�x, �x) and y = (�y, �y), where �(x) and �(x) denote extracted low-level visual features

Fig. 1 An illustration of concordant pairs in the Kendall-Tau rank correlation coefficient (1) for dementia
disease diagnosis
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from image x and annotated disease severity of image x by clinicians, respectively. P and
Q in (1) can be re-written via (2) and (3).

Concordant pair (P ) : sgn(s(x,y)) · sgn(�(x,y)) = 1 (2)

Discordant pair (Q) : sgn(s(x,y)) · sgn(�(x,y)) = −1 (3)
where, sgn(·) is a sign (or signum) function, whose outcome is +1 when its variable is
non-negative and −1 otherwise; s(x,y) is a pre-defined function measuring the disease sever-
ity difference between images x and y as the following form in this study: s(x,y) =<

a, �x − �y >, in which <, > denotes an inner product between vector a and the feature
vector difference between images x and y; �(x,y) is the direct difference of annotated dis-
ease severities by clinicians between x and y: �(x,y) = �x − �y . Hence, the vector a actually
performs a scaling on the feature space, and elements within the vector a are parameters to
learn in this study.

Provided image x contains more severe dementia disease than image y, the disease sever-
ity in image x reflected by s(x) =< a,�x > should be higher than that in image y (i.e.
s(x) > s(y)). Meanwhile, the disease severity of image x annotated by clinicians should also
be higher than that of image y (i.e. �(x) > �(y)). If the above conditions holds, (x, y) con-
stitutes a concordant pair, P increases by 1 as indicated by (2) (i.e., s(x,y) = s(x) − s(y) > 0
and �(x,y) = �x − �y > 0). The above explanation is also valid when x contains less severe
disease than image y and (x, y) constructs a concordant pair in a ranked images list of an
ascending order of disease severities. Otherwise, (x, y) forms a discordant pair, (3) holds,
and Q increases by 1.

After substituting terms P and Q into the original KT coefficient in (1), it can be further
re-written as (4).

KT = 1

Nn

∑

x,y∈D,x �=y

(
sgn(s(x,y)) · sgn(�(x,y))

)
(4)

in which, D denotes all images to be ranked. However, the above equation is still not ready
for direct optimizations because of the well-known step transition characteristics of sign
functions in (4). Therefore, the problem is further handled by approximating the original
discrete sign function using a continuous hyperbolic tangent function. An illustration of the
above approximation is shown in Fig. 2. The detailed approximation is explained in (5),
where ξ denotes the variable of corresponding functions.

sgn(ξ) � tanh(ξ) = sinh(ξ)

cosh(ξ)
=

eξ −e−ξ

2
eξ +e−ξ

2

= eξ − e−ξ

eξ + e−ξ
= e2ξ − 1

e2ξ + 1
(5)

When incorporating (5) into (4), a novel continuous and differentiable surrogate Kendall-
Tau coefficient, named surrogate Kendall-Tau coefficient (SKT), can be written as follows.

SKT = 1

Nn

·
∑

x,y∈D,x �=y

(
exp

(
2(s(x,y))

) − 1

exp
(
2(s(x,y))

) + 1
· exp

(
2(�(x,y))

) − 1

exp
(
2(�(x,y))

) + 1

)
(6)

It can be easily observed that, the above SKT coefficient avoids discrete and non-
differentiable problems inherited in the original KT coefficient, which makes direct
optimizations feasible on SKT for the following functions learning.

2.3 Functions learning in pairwise ranking

A corresponding functions learning algorithm via direct optimization based on SKT via
gradient ascent is elaborated in Table 1. The most critical step in this algorithm is to calculate
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Fig. 2 An illustration of approximating a discrete sign function (in blue) via a continuous hyperbolic tangent
function (in red)

the gradient of SKT with respect to the parameter to learn a (i.e. �SKT(a)) in Steps T4 and
T5. Detailed derivation is explained and demonstrated as follows.

In (6), the second term
exp(2(�(x,y)))−1
exp(2(�(x,y)))+1

within the brackets of the Right Hand Side (RHS)

of SKT can be treated as a coefficient in the derivation of the gradient, since this term is
not related to parameters a to learn. Thus, the following derivation only focuses on the first

Table 1 An algorithm of functions learning based on SKT via pairwise ranking

Inputs Images for training {x ∈ χ}; Images for validation {xv ∈ χv};
Number of Iterations T ; Learning rate η.

Training

T1. Initialize the parameter a in function s(x) as a0

T2. For t = 1 to T

T3. Set a = at−1

T4. Feed {x ∈ χ} to (8) to calculate the gradient
T5. Update a via the gradient ascent: a = a + η · �SKT(a)

T6. Set at = a

T7. End for T2

Validation T learned functions s(x) with T corresponding learned parameters a

V1. For j = 1 to T

V2. Feed j th learned function sj (x) to {xv ∈ χv} for ranking validation images

V3. Calculate its corresponding SKT value using (6)

V4. End for V1

V5. Determine aopt and its corresponding function sopt (x) with the highest SKT

Outputs Learned function: sopt (x)
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term
exp(2(s(x,y)))−1
exp(2(s(x,y)))+1

of RHS in SKT. For the ease of writing, the second term
exp(2(�(x,y)))−1
exp(2(�(x,y)))+1

is denoted as term coeff . After applying the differentiation, the gradient of SKT(a) can be
further derivated as follows.

� SKT(a) = 1

Nn

·
⎛

⎝
∑

x,y∈D,x �=y

2 · exp (
2s(x,y)

) (
s(x,y)

)′ · (
exp

(
2s(x,y)

) + 1
)

(
exp

(
2s(x,y)

) + 1
)2

−2 · exp (
2s(x,y)

) (
s(x,y)

)′ · (
exp

(
2s(x,y)

) − 1
)

(
exp

(
2s(x,y)

) + 1
)2 · coeff

)

= 1

Nn

·
⎛

⎝
∑

x,y∈D,x �=y

4 · exp (
2s(x,y)

) (
s(x,y)

)′

exp2 2s(x,y) + 2 exp
(
2s(x,y)

) + 1
· coeff

⎞

⎠

= 1

Nn

·
⎛

⎝
∑

x,y∈D,x �=y

4 · (
s(x,y)

)′

exp
(
2s(x,y)

) + exp
(
2s(y,x)

) + 2
· coeff

⎞

⎠ (7)

Thus, after replacing the term coeff with its original mathematical form, the gradient
can be re-written as the explicit form in (8), where s(x,y) = s(x) − s(y) =< a, �x − �y >.

�SKT(a)= 1

Nn

·
⎛

⎝
∑

x,y∈D,x �=y

4 · (
s(x,y)

)′

exp
(
2s(x,y)

) + exp
(
2s(y,x)

) + 2
· exp

(
2(�(x,y))

) − 1

exp
(
2(�(x,y))

) + 1

⎞

⎠ (8)

In the above equation, a is the parameter to learn and there are several elements within
it (i.e. the extracted feature vector �x is 8-dimensional in this study, hence there are also 8
elements within a to be determined). Therefore, learning a in this study is actually solving
a multi-dimensional optimization problem. It is commonly acknowledged that, sometimes
high-dimensional problems can be really tricky to tackle, as it is often hard to find the global
optimum. In many studies of computer vision, researchers try to look for a local minimum
which is good enough for specific applications, instead. In Table 1, T iterations are executed
in the training step and there are T learned parameters a obtained (i.e., from Steps T2 to T7
in Table 1). After that, an optimal aopt with the highest SKT value evaluated based on the
validation data is sorted out (i.e., from Steps V1 to V5 in Table 1). Learned function sopt (x)

with the optimal aopt will be utilized in the next testing step for dementia disease diagnosis.

2.4 Disease severity diagnosis

An undiagnosed image x will be sorted together with other diagnosed images, their ordering
in a ranked images list is to be determined by the learned function sopt (x), according to the
ordering of computed score sopt (x) =< aopt ,�x > of all images. When image x is located
at position i of the list, its grade gxi

can be interpolated using both scores of itself computed
as sopt (xi) and those of its neighboring images (i.e., sopt (xi−1) and sopt (xi+1)), as well as
their annotated grades (i.e., gxi−1 and gxi+1 ), which are known diagnosis results provided
by clinicians. The grading strategy to predict the dementia disease severity of image x can
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then be explicitly described as the following piecewise function. In this way, the dementia
disease severity diagnosis task is accomplished.

gxi
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gxi+1 , if gxi+1 = gxi−1

gxi+1 + sopt (xi) − sopt (xi+1)

sopt (xi−1) − sopt (xi+1)
× (gxi−1 − gxi+1), if gxi−1 > gxi+1

gxi−1 + sopt (xi−1) − sopt (xi)

sopt (xi−1) − sopt (xi+1)
× (gxi+1 − gxi−1), if gxi−1 < gxi+1

(9)

3 Experiments and analysis

3.1 Data description and pre-processings

In order to demonstrate the superiority of the new fMRI-based immersive tool for demen-
tia diagnosis, clinical data obtained from 350 patients of different disease progressions,
including 110 Alzheimer’s Disease (AD) patients, 120 Mild Cognitive Impairment (MCI)
patients and 120 Non-Cognitive Impairment (NCI) patients acquired in the affiliated hospi-
tal of Nanchang University, is utilized. Informed consent was obtained from all patients for
research purpose. The averaged age of these patients is 70.56±7.20 years old. Arterial Spin
Labeling (ASL) images, which is an emerging perfusion fMRI technique and a new indi-
cator in contemporary dementia studies [21], are acquired using a SIEMENS 3T TIM Trio
MR scanner for each single patient. Acquisition parameters of the ASL scanning include:
labeling duration = 1500 ms, post-labeling delay = 1500ms, TR/TE = 4000/9.1ms, ASL
voxel size = 3 × 3 × 5 mm3.

When the acquisition of ASL images is accomplished, they need to be pre-processed
before feeding into the fMRI-based immersive tool for dementia diagnosis. The reason is
because that, ASL images often suffer from the Partial Volume Effects (PVE) problem,
which is mainly caused by signal cross-contamination due to pixel heterogeneity and limited
spatial resolution of ASL images [24]. Since PVE indicates the loss of apparent activity
in small objects because of the limited resolution of an imaging system, ASL images with
the PVE problem become more prone to under-estimate the measured perfusion, making
the fMRI-based immersive tool inaccurate to reveal the actual brain atrophy of demented
patients.

Therefore, PVE needs to be properly corrected in the pre-processing step of ASL images.
In this study, the popular regression-based method proposed in [1] is incorporated for PVE
correction. The main idea of this method can be described as follows. When correcting
PVE on pixel i of an ASL image, its neighbors are necessary to be incorporated for adding
up extra information to solve the PVE problem. For instance, given an adopted neighbor
of size n × n, a regression matrix P of the size n2 × 3 can be formulated using PGM ,
PWM , and PCSF , which include fractional Gray Matter (GM), While Matter (WM), and
Cerebro-Spinal Fluid (CSF) tissue volume of all n2 neighbor pixels respectively as P ’s three
columns. Unknowns to be solved in the PVE correction task on pixel i can be obtained
using (P T P )−1P T M̂ , where M̂ depicts a matrix with magnetization on all n2 neighbor pix-
els as its elements obtained in the ASL scanning process; T and −1 represent the transpose
and the inverse of a matrix, respectively. For probability maps PGM , PWM , and PCSF , they
are generated using the SPM toolbox [27] based on High-resolution Magnetization Pre-
pared Rapid Acquisition Gradient Echo (MPRAGE) T1-weighted MRI images [2] acquired
with ASL images simultaneously, in the ASL scanning protocol of this study. The above



Multimed Tools Appl (2016) 75:5359–5376 5367

obtained maps are then co-registered towards their corresponding ASL images after motion
correction for every patient using the FSL toolbox [7].

3.2 Experiments and analysis on dementia diagnosis

After all the above pre-processing steps are executed, ASL images can be utilized as fMRI
in the new image-based immersive tool for dementia disease diagnosis. The pre-defined
parameters in this novel immersive tool are set as: the number of iterations T = 100 and
the learning rate η = 0.01 in Table 1, through trial-and-error for optimal performance.
Mean ASL signal calculated from the segmented left & right hippocampus, the left & right
parahippocampal gyrus, the left & right putamen, and the left & right thalamus (i.e. the
above tissue segmentation is realized via the IBA-SPM toolbox [14]) from ASL images
after PVE correction is utilized to construct a 8-dimensional feature vector �(x) for image
x, following literatures in clinical dementia studies [10, 11, 19].

Other popular pattern recognition tools widely utilized in conventional disease diag-
nosis studies, including Linear Regression (denoted as “LR”), Support Vector Regression
(denoted as “SVR” as a non-linear regression tool) and Ranking-Support Vector Machine
(denoted as “RankingSVM” as a popular ranking tool) are implemented in this experiment
based on all patients data for dementia diagnosis performance evaluation. Since learning
is incorporated in the newly proposed immersive tool (denoted as “Our Method”), param-
eters of other methods are also determined via learning for fair comparisons. For SVR
and RankingSVM, Gaussian Radial Basis Function (RBF) are adopted as kernels; Gaus-
sian widths are learned via the popular radius/margin bound algorithm [17], and SVM-light

Table 2 The constitution of all
20 trials in 5-fold cross validation Trial Training Validation Testing

I 1,2,3 4 5

II 1,2,3 5 4

III 1,2,4 3 5

IV 1,2,4 5 3

V 1,2,5 3 4

VI 1,2,5 4 3

VII 1,3,4 2 5

VIII 1,3,4 5 2

IX 1,3,5 2 4

X 1,3,5 4 2

XI 1,4,5 2 3

XII 1,4,5 3 2

XIII 2,3,4 1 5

XIV 2,3,4 5 1

XV 2,3,5 1 4

XVI 2,3,5 4 1

XVII 2,4,5 1 3

XVIII 2,4,5 3 1

XIX 3,4,5 1 2

XX 3,4,5 2 1
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Fig. 3 Boxplot of disease severity prediction errors among all compared methods in the case of 5 × 5
neighbor size (i.e., 1-Our Method; 2-LR; 3-SVR; 4-RankingSVM)

toolbox [16] is utilized for their implementations. For LR and Our Method, disease sever-
ities of different progressions of dementia, i.e., AD, MCI and NCI, are labeled as 3, 2 and
1 respectively. Regression coefficients in LR are determined via labels and regressors (i.e.,
the 8-dimensional feature vector) of the training data.

In our experiments, there are totally 3 different sizes of neighbors incorporated in the
regression-based PVE correction method, in order to evaluate the diagnosis performance of
all compared methods regarding different PVE correction situations when dealing with ASL
images. To be specific, 5 × 5, 9 × 9 and 15 × 15 neighbors are adopted to represent small,
medium, and large sizes of neighbors, respectively in PVE correction. The whole dataset
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Fig. 4 Boxplot of disease severity prediction errors among all compared methods in the case of 9 × 9
neighbor size (i.e., 1-Our Method; 2-LR; 3-SVR; 4-RankingSVM)
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Fig. 5 Boxplot of disease severity prediction errors among all compared methods in the case of 15 × 15
neighbor size (i.e., 1-Our Method; 2-LR; 3-SVR; 4-RankingSVM)

of 350 patients is equally divided into 5 subsets to conduct a 5-fold cross validation for
statistical evaluation. In each subset, patients with different dementia disease severities are
roughly equivalent (i.e., 22 AD/ 24 MCI/ 24 NCI in each subset). Since there are training,
validation and testing phases in the newly proposed immersive tool, and numbers of subsets
utilized in them are 3, 1 and 1 individually in each trial of the 5-fold cross validation, the
total number of trials in the whole 5-fold cross validation is C3

5 · C1
2 · C1

1 = 20, where

C
(�)
(∗) denotes the number of combinations of � objects from a set of ∗ objects. Details of

the constitution of all 20 trials in the 5-fold cross validation is elaborated in Table 2. For
other compared methods without validation (i.e., “LR”, “SVR” and “RankingSVM”), all
non-testing subsets (i.e., training+validation subsets) are utilized for parameters learning in
each trial.

The prediction error measuring the difference between the disease severity prediction
generated by a diagnosis tool of one patient and her/his corresponding annotated disease
severity by clinicians is utilized to evaluate the diagnosis performance among all compared
methods. The smaller the prediction error, the superior the corresponding method becomes.
Based on all disease severity prediction errors generated by all compared methods in the

Table 3 Multiple comparison test of all compared methods based on disease severity prediction errors in the
case of 5 × 5

Method I Method II Prediction Error Difference (I-II) A 95 % Confidence Interval

Our Method LR −0.1905 [−0.2353,−0.1457]
Our Method SVR −0.1028 [−0.1475,−0.0580]
Our Method RankingSVM −0.0196 [−0.0644, 0.0252]
LR SVR 0.0877 [0.0429, 0.1325]
LR RankingSVM 0.1709 [0.1261, 0.2157]
SVR RankingSVM 0.0832 [0.0384, 0.1280]
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Table 4 Multiple comparison test of all compared methods based on disease severity prediction errors in the
case of 9 × 9

Method I Method II Prediction Error Difference (I-II) A 95 % Confidence Interval

Our Method LR −0.1283 [−0.1773,−0.0794]
Our Method SVR −0.0085 [−0.0575, 0.0404]
Our Method RankingSVM −0.0024 [−0.0514, 0.0465]
LR SVR 0.1198 [0.0709, 0.1687]
LR RankingSVM 0.1259 [0.0770, 0.1748]
SVR RankingSVM 0.0061 [−0.0428, 0.0550]

above three cases of PVE correction, three box-and-whisker plots are depicted in Figs. 3, 4
and 5, respectively. In each box, a red horizontal line is drawn across each box representing
the median of prediction errors, while the upper and lower quartiles of prediction errors
are depicted by blue lines above and below the median. A vertical dashed line is drawn
up from the upper and down from the lower quartiles to their most extreme data points,
which are within a 1.5 Inter-Quartile Range (IQR) [25]. It can be observed that boxes of
Our method, SVR and RankingSVM are significantly lower than that of LR, which reveals
that disease severity prediction errors generated by LR cannot be compared with others.
However, which method among Our method, SVR and RankingSVM can produce the best
diagnosis outcomes is still obscure based on box-and-whisker plots alone.

In order to clear the above doubt, a designated statistical analysis composed of one-way
ANalysis Of VAriance (ANOVA) followed by a post-hoc multiple comparison test [25]
is further conducted. ANOVA is a popular correction of models analyzing the difference
between diverse group means and their associated variations in statistics [25]. To be specific,
in one-way ANOVA, means of prediction errors from all methods are compared to test a
hypothesis (H0) that, all prediction error means of various methods could be equivalent,
against the general alternative that at least one method is different. P-value is used here as
an indicator to reveal whether H0 exists or not. In this study, p-values for cases of 5 × 5,
9× 9, and 15× 15 are all nearly 0, which strongly suggests that H0 is an invalid hypothesis
for all cases. Hence, the next step is to do more detailed paired comparisons. The reason
to conduct paired comparisons here is because that, the generative alternative against H0 is
too general to reveal which method is superior from the statistical point of view. Therefore,
a post-hoc multiple comparison test is adopted to investigate it.

Table 5 Multiple comparison test of all compared methods based on disease severity prediction errors in the
case of 15 × 15

Method I Method II Prediction Error Difference (I-II) A 95 % Confidence Interval

Our Method LR −0.1266 [−0.1733,−0.0800]
Our Method SVR −0.0462 [−0.0928, 0.0005]
Our Method RankingSVM −0.0133 [−0.0599, 0.0333]
LR SVR 0.0805 [0.0338, 0.1271]
LR RankingSVM 0.1133 [0.0667, 0.1600]
SVR RankingSVM 0.0329 [−0.0138, 0.0795]
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Fig. 6 Histogram of disease severity prediction errors provided by Our Method in the case of 5×5 neighbor
size

Entries in Tables 3, 4 and 5 are results of multiple comparison tests based on prediction
errors generated by all methods for cases of 5×5, 9×9, and 15×15, respectively. Each row
indicates a paired comparison between two methods, and there are two types of estimations
for each paired comparison: one is a single-value estimation, which estimates the difference
of prediction errors within two compared methods by a single value; the other is an interval
estimation conducted via a 95 % Confidence Interval (CI), which estimates a range that the
prediction error difference is likely to be included. For instance, the first row of Table 3 is
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Fig. 7 Histogram of disease severity prediction errors provided by Our Method in the case of 9×9 neighbor
size
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about the paired comparison between Our Method and LR in the case of 5 × 5. The predic-
tion error difference of the single-value estimation is −0.1905 (using Our Method minus
LR), which suggests that Our Method can produce less disease severity prediction errors
than LR, from the single-value estimation perspective. The prediction error difference is
likely to fall within a 95 % CI [−0.2353, −0.1457]. Since both its upper and lower bounds
are both negative, it gives a strong indication (> 95 %) that, the prediction error difference
(using Our Method minus LR) is negative. Hence, Our Method is superior to LR in the case
of 5 × 5 from both single-value and interval estimation perspectives. For paired compar-
isons between Our Method and others, the analysis is similar. The prediction errors of Our
Method is 0.1028 and 0.0196 smaller than SVR and RankingSVM, respectively from the
single-value estimation perspective in Table 3. The 95 % CIs for the two paired compar-
isons are [−0.1475, −0.0580] and [−0.0644, 0.0252]. One thing to clarify here is that, the
upper bound of the 95 % CI between Our Method and RankingSVM is positive. It suggests
that, RankingSVM can be marginally better than Our Method in certain patients diagnosis
(i.e., RankingSVM is superior in 28.13 % diagnosis in the case of 5 × 5, following a gen-
eral assumption that the 95 % CI [−0.0644, 0.0252] is uniformly distributed). However,
Our Method still dominates in more than half of all patients diagnosis following the above
analysis, if a positive upper bound exists in the 95 % CI. Similar conclusions can also be
drawn in Tables 4 and 5 regarding comparisons between Our Method and others. To sum up,
after conducting the one-way ANOVA followed by multiple comparison tests, Our method
outperforms others from the statistical point of view.

In Fig. 6, a histogram depicting the distribution of disease severity prediction errors
obtained by Our Method in the case of 5 × 5 neighbor size is illustrated based on all diag-
nosis results obtained from the 5-fold cross validation. The number of testing data in Fig. 6
is 1400 (which equals to 350× 4, as each testing subset will be utilized C3

4 × C1
1 = 4 times

brought by different combinations of training and validation subsets in the 5-fold cross val-
idation). It can be observed that, the prediction error of most cases is within the range [−1,
1]. In Figs. 7 and 8, similar observations exist for cases of 9×9 and 15×15 neighbor sizes.
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Fig. 8 Histogram of disease severity prediction errors provided by Our Method in the case of 15 × 15
neighbor size
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Statistics of prediction errors for cases of 5 × 5, 9 × 9 and 15 × 15 are 0.5086 ± 0.4748,
0.4318± 0.4418, and 0.4843± 0.4625 (i.e., means± standard deviation), respectively. The
accuracies for the three cases are 95.43 %, 97.71 %, and 96.86 %, respectively when tak-
ing diagnosis outcomes with the absolute prediction error less than 1 as accurate diagnosis
following our senior clinicians suggestions. Overall, the superiority of the newly proposed
fMRI-based immersive tool in dementia disease diagnosis can be revealed by the above
extensive experiments and comprehensive analysis from the statistical point of view.

3.3 Discussion

In this study, the linear ranking function s(x) =< a,�x > is utilized for each image x,
where �x denotes the extracted feature from image x and a represents the unknown param-
eter to learn. In this section, the choice of linear and non-linear ranking functions and
their influence on dementia disease diagnosis performance is investigated and discussed.
To be specific, an exponential form s(x) = exp (< a, �x >) is incorporated as the com-
pared non-linear ranking function in this fMRI-based immersive tool for dementia disease
diagnosis. To reveal its performance, the same 5-fold cross validation using the same com-
binations of training, validation and testing data is adopted, and the same statistical analysis
is performed with this non-linear ranking function. It turns out that, prediction errors (i.e.,
means ± standard deviation) for cases of 5 × 5, 9 × 9 and 15 × 15 are 0.4331 ± 0.4425,
0.5089 ± 0.4758, and 0.4849 ± 0.4632, respectively when the non-linear ranking func-
tion is incorporated. The accuracies for the above three cases are 97.43 %, 95.29 %, and
96.86 %, respectively when taking diagnosis outcomes with the absolute prediction error
less than 1 as accurate diagnosis results following the same strategy as that of the lin-
ear ranking function. After comparing the above outcomes with ones of the linear ranking
function accordingly within the same immersive tool, it can be concluded that, the demen-
tia disease diagnosis performance brought by both linear and non-linear ranking functions
in this newly proposed fMRI-based immersive tool are comparable. Thus, both linear and
non-linear ranking functions are applicable.

4 Conclusion

In this study, a novel image-based immersive tool for dementia disease diagnosis via new
pairwise ranking and learning techniques is proposed for the first time. Arterial spin label-
ing is incorporated as images for diagnosis. Extensive experiments and their comprehensive
statistical analysis demonstrate the superiority of the novel image-based immersive tool
in dementia disease diagnosis. Main contributions of this study can be summarized as:
1) Technically, new pairwise ranking and learning techniques based on a new continuous
and differentiable surrogated Kendall-Tau rank correlation coefficient are introduced in this
paper; 2) It is also the first attempt to perform dementia disease diagnosis from the new
perspective of pairwise ranking. Future efforts will be emphasized on investigating other
types of image-based immersive tools with more sophisticated ranking models equipped for
diverse disease diagnosis, based on different modalities of medical images.
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