array(2) { ["lab"]=> string(4) "1398" ["publication"]=> string(5) "13603" } Influence of different blade numbers on the performance of “saddle zone” in a mixed flow pump - 李伟实验室 | LabXing

Influence of different blade numbers on the performance of “saddle zone” in a mixed flow pump

2021
期刊 Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
下载全文
In order to study the effect of different numbers of impeller blades on the performance of mixed-flow pump “saddle zone”, the external characteristic test and numerical simulation of mixed-flow pumps with three different impeller blade numbers were carried out. Based on high-precision numerical prediction, the internal flow field and tip leakage flow field of mixed flow pump under design conditions and stall conditions are investigated. By studying the vorticity transport in the stall flow field, the specific location of the high loss area inside the mixed flow pump impeller with different numbers of blades is located. The research results show that the increase in the number of impeller blades improve the pump head and efficiency under design conditions. Compared to the 4-blade impeller, the head and efficiency of the 5-blade impeller are increased by 5.4% and 21.9% respectively. However, the increase in the number of blades also leads to the widening of the “saddle area” of the mixed-flow pump, which leads to the early occurrence of stall and increases the instability of the mixed-flow pump. As the mixed-flow pump enters the stall condition, the inlet of the mixed-flow pump has a spiral swirl structure near the end wall for different blade numbers, but the depth and range of the swirling flow are different due to the change in the number of blades. At the same time, the change in the number of blades also makes the flow angle at 75% span change significantly, but the flow angle at 95% span is not much different because the tip leakage flow recirculates at the leading edge. Through the analysis of the vorticity transport results in the impeller with different numbers of blades, it is found that the reasons for the increase in the values of the vorticity transport in the stall condition are mainly impacted by the swirl flow at the impeller inlet, the tip leakage flow at the leading edge and the increased unsteady flow structures.